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ABSTRACT 

The problem of unfolding a distribution which is a composite of several unknown but 
identical distributions is considered. A numerical method is developed, based on a 
smoothing criterion, which, when applied to a sample set of experimental data, yields 
results in good agreement with previous hand-graphical procedures. 

1. INTRODUCTION AND SUMMARY 

In this paper we consider the problem of unfolding a distribution which is a 
composite of several unknown, but identical distributions. The experimental data, 
y, is of the form 

with funknown except for being “smooth”. The problem is to find the (a*/~~) and 
(T$ - TJ. We set up a smoothing criterion, 

6 jj (f’)Z c(x) dx/ = 0 

and, subject to fitting the experimental data, derive from it a system of equations. 
These equations are of the form 

* This work was performed under the auspices of the U. S. Atomic Energy Commission. 
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where A and B are separately factorable into the product of an upper and a lower 
triangular matrix, but the sum is not transparently so factorable. A factorization, 
pseudotime method is introduced, following the Baker-Oliphant [l, 2,3] method 
for multi-dimensional heat flow problems where a similar structure arises. The 
application of this method to a sample problem results in an error reduction of a 
factor of 100 per 7 to 15 “major cycle” iterations. In the sample problem considered, 
smoothing the curve was significant and the results were in good agreement with 
hand-graphical procedures used heretofore. 

2. DESCRIPTION OF THE PROBLEM 

Although the procedures we develop are applicable to a wide class of problems, 
we shall, for the sake of clarity concentrate on the following unfolding problem 
which arises in nuclear physics. Samples of material are irradiated and then allowed 
to decay through the process of internal conversion, i.e. the energy of decay is 
used to eject an electron from the atom which surrounds the decaying nucleus. 
The ejected electrons are then passed through a spectrometer, which analyzes them 
according to energy. Electrons starting in the same atomic subshell will have very 
close to the same energy. If perfect experimental equipment were available, one 
would expect to see a family (3 in the case we will consider) of very narrow, well 
defined lines. Due, however, to imperfections in the apparatus, each well defined 
original line produces an observed line shape (vs. energy) which characteristically 
drops fairly sharply to zero on the high energy side, but which has a long decaying 
tail on the low energy side. This shape is not known theoretically but is a 
complicated functions of the experimental apparatus used. What is known about 
it is, that it is the same, to all intents and purposes, for all (three) the lines of a 
family because they lie so close together in energy. The line shape will vary only 
slowly as a function of the energy of the line. 

The quantities of interest are the relative strengths (total intensities) and positions 
(energies) of the lines. We may break the data into three regions in energy, where 
one, two, and three of the lines respectively make a nonzero contribution to the 
experimental counting rate. 

If u(x) is the observed intensity at energy (or actually momentum which is corre- 
lated to energy in a one-to-one fashion) x and f(x) is the true shape function 
for the line with the highest momentum, then we have 

(2.1) 

region I 

region II 

region III 

Y(X) = f(x) + 4x) 

y(x) = f(x) + af(x + Tl) + ‘(4 

y(x) = f(x) + af(x + Tl) + PfBf(x + T2) + 4x>* 
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where Tl and T, are the shift in momentum between the positions of the first and 
second, and the first and third lines respectively. E(X) is the experimental error. 
The multipliers 01 and /3 are the ratio of intensities between the second and first, 
and the third lines respectively. Since the data is taken at discrete points we may 
more compactly and conveniently represent (2.1) as 

Yi = Mijf j + Ei (2.2) 

where Mij is an upper triangular matrix. Summation over a repeated index is 
implied. When the translations Tl and T, are not an integral number of data 
points, which in general they will not be, then an interpolation is implied to find 
f(x + Tl) andf(x + T,>. We have used, in practice, 4-point interpolation. 

The problem then is, from an experimental set of y(x), to determine 01, 8, Tl 
and T, . 

3. SMOOTHING CRITERION 

In order to make the problem set forth in the previous section meaningful, it is 
necessary to introduce a smoothing criterion. Various possible criteria have been 
proposed ([4], [5], [6]). Podolsky and Denman [7] have proved that if the smoothing 
is to be scale free and imposed by a condition 

8 1 j: w(x,f',f") dxf = 0 (3.1) 

then w must be a homogeneous function off’ and f “. We prefer the following 
criterion 

6 [j” (f’)2 c(x) dx/ = 0 (3.2) 
a 

where c(x) > 0 because we feel intuitively that the shortest curve would be the 
best one and the length of a curve is 

r ds = [” [I + (dfldx)2]‘/2 dx 

The shortest-curve condition is not scale free however. To make it scale free [7] 
we observe if we introduce a scale factor E, which we think of as making 
max 1 E df/dx I small compared to unity, then (3.3) becomes 

jb[1+;(~dfidx)a+*~~]dx=(b-a)+~t~j~(~)2dx+... (3.4) a 
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As (b - a) has a fixed value, we may disregard it for variational purposes. The 
function C(X) serves to generalize the scale of the independent variable. 

In addition to the requirement thatf(x) be smooth, (3.2) we shall also require 
that the experimental data fit (2.2) within experimental error. To this end we impose 

a least square procedure, where the weights are one over the experimental counts 
(before the background is subtracted out). The expected value of (3.5) is [8] N, the 
number of data points. 

Consequently, we now impose the requirements that the discrete analogue of 
(3.2) be a minimum with respect toJ; , a, /3, Tl and T, , subject to (3.5). Using the 
standard method of Lagrange multipliers [9] we obtain the equations 

where 
@Q>lVi = 0 (3.6) 

Q = y (fi+l -J;I)” 4-d + X 5 (vi - Mcfb2 wi 
i-1 xi+l - xi i=l 1 (3.7) 

or writing out (3.6) 

.A+* -h 
xi+1 - Xi 

- x”i 1 ;zl + 2A[M$vj(yj - Mikfk)] = 0 i = l,..., N (3.8) 

where the boundary conditions f,,, = fN and f0 = fi are appropriate and MT is 
the tranpose of M. The minimization with respect to 01, /3, Tl and T, will be effected 
by a direct search for the minimum of Q in parameter space as the variational 
equations obtained are nonlinear. 

4. SOLUTION PROCEDURES 

The idea we have used to solve (3.8) is to notice that its structure is in some 
ways similar to a higher-dimensional, steady-state heat-flow problem. For the 
heat flow problem we know that any original distribution of temperatures will 
eventually decay to the steady-state distribution. One standard technique in the 
solution of a time independent heat-equation is to introduce a pseudo-time and 
integrate the pseudo-time dependent heat-flow equations forward until the steady- 
state temperature distribution is obtained. We use the same, pseudotime approach 
to solve (3.8); that is we introduce a pseudo-time which we may advance until an 
asymptotically steady solution is obtained which is exactly the solution of (3.8). 
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We seek to do this in such a way that we may factor the equation (3.8) as a product 
of (approximately) upper and lower triangular matrices, following the procedure 
of Baker and Oliphant ([1], [2], [3]). To this end let us rewrite (3.8) as 

where we use the notation 

(4.1) 

(4.2) 

We may now factor (4.1) as 

$ (yM;wj - di + A,-,)(& + 2hMjk)f(kn) 

= M;C%yj + ywj.fJ + (Wr>(-4 + 4-d MiJ,* (4.3) 

where we have relabeled f, as f jcn), fj , and f $ in various parts of the equation. We 
now imagine that the first term on the left hand side and on the right side of (4. l), 
when taken together represent 

M..w. afi 
‘3 3 at (4.4) 

where t is the pseudo-time. If we select 

Y = 3/(24t), and f = +f(“-1) - +f(n-2) (4.5) 

then we obtain the standard, 3-point difference approximation for the time 
derivative 

(4.6) 

for f * we use linear extrapolation 

f * = 2f bz-1) - p-2)* (4.7) 

Using these approximations, the right hand side is completely known. For small 
At we have errors of only (dt)2. Even for large (At), the terms 4 and f * cancel 
their counter-terms on the left-hand side of eq. (4.3) asymptotically as t -+ co. 
Let us introduce 

g:ln) = (y + m&If y (4.8) 
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We obtain from (4.3) the equation for gjn’ as 

[M;wj + 6,jy-1(~j-, - A,)] g(,“’ 
(4.9) 

As MiTj is lower triangular, the equation for gp’ is lower triangular plus the first 
super diagonal. As (4.9) is linear we could make two guesses for gr’ and solve 
the equations i = I,..., N - 1 for the other gy’ and then select a linear combination 
of these two solutions which satisfies the i = N equation. Unfortunately, the 
magnitude of M relative to d, can be such that an excessive amount of accuracy 
is lost using this procedure. We adopt an alternate procedure. We rewrite (4.9) as 

(Mh + hK1 ( xi y xi-l + xi+l l- xi )) A 

= y-l (xi p’;i-l + xi+;! ,) + R.H.S. of (4.9) 

(4.10) 

where we relabeled g(@) as g* and g” in part of the equation. Our solution procedure 
is guess g* from f * via (4.8), solve for g” from (4.10) as the left hand side is now 
triangular. Use linear extrapolation to obtain a new g* and iterate until g* and g” 
agree. The result is g (*). This iteration procedure (a form of relaxation) converges 
very rapidly for this equation, and a decrease of the error by a factor of ten or 
more per iteration is not uncommon. As a practical matter we required about 6 
figure consistency for the solution. Having solved (4.9) by the above “minor-cycle” 
iteration we may now easily solve (4.8) for f cn) as that equation is triangular. The 
solution for f tn) from f tn-l) and f(n-2) constitutes one “major cycle” iteration. 
Guided by the results of Baker and Oliphant [I, 2,3] we pick 

y = 241 + 01 + p> + (4.11) N ~~~ 
( 
w, (Xi+12’ Xi)(& - Xi-l) 

2 
xi+1 - Xi-1 1 

and again find an error reduction by a factor of 100 for each 7 to 15 “major cycles”. 
We required an accuracy of 

5 (j-y -,y))2 < lo-‘IV (4.12) 

to terminate an iteration procedure where the fi are normalized so that the third 
peak has height 10.0, in order to quote a relatively experiment-free rule. 
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The final variation with respect 01, /3, Tl and T, is accomplished by use of Powell’s 
[lo] method as applied to Q. 

As an illustration of our method, we have analyzed some data of Erman, Emery, 
and Perlman [I l] on Tm16g. In Figure 1 we have illustrated this data together with 
our solution for the three component peaks. We have chosen c(x) of (3.2) to be 
1.0, except in the flat tail region (first 23 of 106 data points) we choose it to 100 to 

FIG. 1. A plot of the sample data (solid curve) together with the three resolved peaks (dashed 
lines). The right hand resolved peak and the data are virtually indistinguishable except in the 
tail region. 

accentuate the known flatness in that region. We determine that the Lagrange 
multiplier X for this case is about 0.1 in order to satisfy (3.5) with S, - N. We 
first, in order to save computer time, solved for LY, /!I, Tl and T, with S, = O(h = co). 
It will be noted that in this limit, (3.8) can be easily cast into triangular form. We 
obtained 01 = 1.106 and /3 = 0.267 as the best fit in this case. For h = 0.1, the 
results change appreciably to c1 = 1.118 and p = 0.276. These results are to be 
compared to the hand-graphical procedures previously employed [I l] which 
yielded 01 = 1.14 f 0.02 and /3 = 0.292 i 0.005. The use of smoothing in this 
problem is apparently significant and agrees well with the results of hand graphical 
procedures previously employed. The entire calculation for one value of h required 
about 7 minutes on the CDC 6600 computer. 

Very appreciable savings in computer time can be effected by recognizing that 
MT represents shifts of the opposite sign to those in (2.1), and by using a direct 
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interpolation to find them, as was done to construct M. This procedure has the 
advantage that the approximate MT is now comprised of narrow strips parallel to 
the main diagonal. It has the disadvantage that we can no longer be absolutely 
certain that Q is nonegative definite. 
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